Navigating to Objects in the Real World

Theophile Gervet ¹

Soumith Chintala⁴

Dhruv Batra ^{3,4}

Jitendra Malik^{2,4}

Devendra Chaplot⁴

Unseen environment: No experience, No map

Spatial Scene Understanding Navigable Space Detection

Semantic Scene Understanding Object Detection

Spatial Scene Understanding Navigable Space Detection

Semantic Scene Understanding Object Detection

E :

: 🔄

Semantic Exploration Priors Where is a toilet more likely to be found?

Semantic Exploration Priors Where is a toilet more likely to be found?

Episodic Memory Keep track of explored and unexplored areas

[A Frontier-based Approach for Autonomous Exploration. Yamauchi, CIRA 1997]

Modular Learning

Habitat

Al2-Thor

Methods

- Large-scale IL + RL fine-tuning
- 77,000 human trajectories
- 200M frames of RL

Goal: couch

SPL: 0.74, 78 steps Modular **Third-person view** Success

SPL: 0.0, 121 steps

SPL: 0.33, 181 steps

Classical vs Modular Learning Goal: bed

SPL: 0.90, 98 steps

Semantic Exploration

SPL: 0.52, 152 steps

End-to-end fails to Transfer

Failures

Modular vs End-to-end Transfer

Sim

Success Rate

Real World

	0.81		0.47
		0.90	0.64
	0.78		0.42
	0.80		0.58
	0.78		0.39
			0.16
0.5	50 0.75	1.()0

SPL

Modular Learning Sim vs Real

Sim

Success Rate

SPL

Real World

Modular Learning Sim vs Real

0.79

Success Rate

1.00

Real-world Depth Sensor Errors

Noisy depth

Real-world Depth Sensor Errors

Takeaways

For practitioners:

SUCCESS

For researchers:

- Models relying on RGB images are hard to transfer from sim to real *leverage modularity and abstraction in policies*
- semantic navigation on real robots

Modular learning can reliably navigate to objects with 90%

Thank you!

Webpage: https://theophilegervet.github.io/projects/real-world-object-navigation

