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[A Frontier-based Approach for Autonomous Exploration. Yamauchi, CIRA 1997]
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End-to-end Learning

[Habitat-Web, Learning Embodied Object-Search Strategies from Human Demonstrations at Scale. Ramrakhya et al., CVPR 2022]
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[Object Goal Navigation Using Goal-Oriented Semantic Exploration. Chaplot et al., NeurIPS 2020]
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Empirical Evaluation 
3 Approaches 

6 Unseen Homes 
6 Goal Object Categories
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Modular Learning Sim vs Real
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Takeaways
For practitioners:  
• Modular learning can reliably navigate to objects with 90% 

success

For researchers:  
• Models relying on RGB images are hard to transfer from sim 

to real         leverage modularity and abstraction in policies
• Disconnect between sim and real error modes         evaluate 

semantic navigation on real robots



Thank you!

Webpage: https://theophilegervet.github.io/projects/real-world-object-navigation


